ORIGINAL PAPER

In-Geol Choi • Sang Suk Kim • Jae-Ryeon Ryu Ye Sun Han • Won-Gi Bang • Sung-Hou Kim Yeon Gyu Yu

Random sequence analysis of genomic DNA of a hyperthermophile: Aquifex pyrophilus

Received: March 1, 1997 / Accepted: May 9, 1997

Abstract Aquifex pyrophilus is one of the hyperthermophilic bacteria that can grow at temperatures up to 95°C. To obtain information about its genomic structure, random sequencing was performed on plasmid libraries containing 0.5-2kb genomic DNA fragments of A. pyrophilus. Comparison of the obtained sequence tags with known proteins revealed that 123 tags showed strong similarity to previously identified proteins in the PIR or Genebank databases. These included three proteases, two amino acid racemases, and three enzymes utilizing oxygen as substrate. Although the GC ratio of the genome is about 40%, the codon usage of A. pyrophilus showed biased occurrence of G and C at the third position of codons, especially those for amino acids such as asparagine, aspartic acid, cysteine, glutamine, glutamic acid, histidine, lysine, and tyrosine. A higher ratio of positively charged amino acids in A. pyrophilus proteins as compared with proteins from mesophiles suggested that Aquifex proteins might contain increased ion-pair interaction that could help to maintain heat stability.

Key words *Aquifex pyrophilus* · Hyperthermophile · Genome sequence · Protease · Racemase · Oxidase

Communicated by G. Antranikian

I.-G. Choi · S.S. Kim · J.-R. Ryu · Y.S. Han · Y.G. Yu (⊠) Structural Biology Center, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul, Korea Tel. +82-2-958-5936; Fax +82-2-958-5939 e-mail: ygy@kistmail.kist.re.kr

W.-G. Bang

Department of Agricultural Chemistry, Korea University, Seoul, Korea

S.-H. Kim

Department of Chemistry and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA

Introduction

Organisms which can grow at near or above the boiling point of water have been identified from various geothermal locations and named hyperthermophiles. Most hyperthermophiles belong to the Archaea except two genera of Bacteria, Aquifex and Thermotoga. Aquifex pyrophilus, which was isolated from a marine thermal deposit near a site of volcanic activity (Huber et al. 1992), has the highest known optimum growth temperature (85°C) among Bacteria. It is a Gram-negative bacterium and a strict chemolithoautotroph that uses CO₂ as a carbon source and H₂ as an electron donor. One of the unique properties of this organism is its ability to utilize oxygen as an electron acceptor. It can also use nitrate as an electron acceptor under anaerobic growth conditions. Comparison of the 16S rRNA sequence from A. pyrophilus to those from other bacteria located this organism at the deepest branchoff in the bacterial domain (Burggraf et al. 1992). Hyperthermophily, chemolithoautotrophy, and basal location in the phylogenetic tree suggested that this organism might possess characteristics of an ancestor of Bacteria.

The genome size of A. pyrophilus has been determined to be about 1.6×10^6 base pairs and its physical map has been constructed using rarely cutting restriction enzymes (Shao et al. 1994). A few genes from A. pyrophilus had been cloned and characterized. Among them are tRNA synthetase (Brown and Doolittle 1995), elongation factor G (Bocchetta et al. 1995), flagellin (Behammer et al. 1995), and the recA gene (Wetmur et al. 1994). Amino acid sequences of proteins from A. pyrophilus were about 38%-60% identical to those from mesophilic bacteria such as Bacillus, $Escherichia\ coli$, or Salmonella. The extent of these identities was higher than the value between hyperthermophilic Archaea and mesophilic Bacteria.

Sequence analysis of randomly selected cDNA or fragments of genomic DNA has been proved to be quite an effective method for obtaining a large amount of genomic information. In the case of *Thermatoga maritima*, among 175 randomly selected cDNA clones derived from polyA-

containing mRNA, 52 unique clones showed significant amino acid sequence similarity with known proteins (Kim et al. 1993). Sequencing of a large number of randomly prepared short genomic DNA fragments and assembly of the sequences can produce a contiguous sequence of the whole genome. This approach was successfully applied to sequencing the small genomes from organisms such as Haemophilus influenzae (Fleischmann et al. 1995) or Methanococcus jannaschii (Bult et al. 1996). In these organisms, about 1700 predicted protein-coding regions were identified from the whole genome of 1.8-Mb size. Genes from these organisms were very compactly organized. As a result, the coding region covered more than 85% of the total genome and the distances between two adjacent genes were small. Since A. pyrophilus has a small genome, the noncoding regions will be very small compared to the coding regions and the probability that the randomly sequenced genomic DNA is a coding region of a gene would be high.

Here, we report the identification of more than one hundred genes of *A. pyrophilus* using random sequencing of its genomic DNA library. The efficiency of the random sequence tag method, the presence of interesting genes in terms of biotechnology, the codon usage, and the relative amino acid frequency are also discussed.

Materials and methods

Materials. *A. pyrophilus* cells (stock number 6858) were obtained from Deutsch Sammlung von Mikroorganismen (DSM, Braunschweig Germany). Plasmid pBluescript II KS(+) (Strategene, La Jolla, CA, USA) and pUC19 were used for the construction of a plasmid library. The host strain of *E. coli* for plasmid DNA amplification was DH5α [supE44 ΔlacU169(φ80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1]. Restriction enzymes and DNA modification enzymes used for this study were of molecular biology grade.

Cell culture and DNA isolation. A modified SME media (Stetter et al. 1983) was used for the growth of A. pyrophilus. The cells were inoculated into 20ml of liquid medium in a 120-ml incubation bottle which was filled to 3 bar with a gas mixture composed of hydrogen, carbon dioxide, and oxygen at a ratio of 79.5:20:0.5 (%). Cells were grown for 12h at 85°C with moderate shaking (120 rpm) as described previously (Huber et al. 1992). Cells were harvested by centrifugation at $10000 \times g$ for $10 \, \mathrm{min}$. The cell pellet was washed with 10 mM Tris-HCl (pH 8.0) and stored at -80°C until further usage. For isolation of genomic DNA, a genomic DNA purification kit from Qiagen (Hilden, Germany) was used. The cell pellet of A. pyrophilus (100 mg wet weight) was resuspended in 1 ml of 50 mM Tris-HCl (pH 8.0), 50 mM ethylenediaminetetraacetic acid (EDTA), 0.5% Tween-20, and 0.5% Triton X-100, which also contained ribonuclease and lysozyme at a concentration of 0.2 mg/ml and 2 mg/ml, respectively, and was incubated at 37°C for 1 h. After the incubation, proteinase K was added to the mixture to a concentration of 1 mg/ml, and this was incubated at 50°C overnight. After the treatments, the genomic DNA was purified using a silica base column as described in the instruction manual. Plasmid DNA for sequencing analysis was prepared from *E. coli* using a plasmid DNA mini prep kit (Qiagen).

Library construction. Two sets of plasmid library, using pBluescript II KS(+) and pUC19, were prepared. Plasmid pBluescript II KS(+) and pUC19 DNA were digested with HindIII and EcoRI, respectively, and the linear plasmid DNAs were recovered from an 0.8% agarose gel after electrophoresis. Genomic DNA of A. pyrophilus was partially digested with HindIII or Tsp509 I until the average size of DNA fragments was 0.5-1.5kb. The genomic DNA fragments from HindIII digestion were ligated with pBluescript II KS(+) linearized with HindIII. The fragments from Tsp509 I digestion were ligated with EcoRI-restricted pUC19. The ligated plasmid was transformed into E. coli DH5 α cells. The transformed *E. coli* cells were plated on an LB agar plate (Sambrook et al. 1989) containing 100 µg/ml of ampicillin along with 800 µg of 5-bromo-4-chloro-3indolyl-β-D-galactoside (X-gal) and 800 μg of isopropylthioβ-D-galactoside (IPTG) on the surface of an agar plate. After an overnight incubation, white colonies were selected and their plasmid DNAs were purified. Standard methods for DNA manipulation and analysis were used as described previously (Sambrook et al. 1989).

DNA sequencing. Nucleotide sequences were determined by the dideoxy chain termination method as described in the instruction manual of the ABI sequencing kit (Applied Biosystems, Foster City, CA, USA). Universal primers (T3 or T7 primer) specific for pBluescript II KS(+) and pUC19 plasmid DNAs were used for the sequencing reaction. The sequencing reaction products were separated on an acrylamide gel and the sequences were read using an ABI 373 automatic DNA sequencer.

Sequence analysis. The obtained genomic DNA sequences were converted into amino acids sequences in all six possible reading frames and were compared with the known proteins in the database using the sequence comparison program, BLAST (Altschul et al. 1990). The SEQSEE program (Wishart et al. 1994) was used for sequence alignment between functionally related proteins.

Results

Construction of A. pyrophilus genomic libraries

Plasmid libraries containing small fragments of genomic DNA from *A. pyrophilus* were prepared using plasmid vectors pBluescript II KS(+) or pUC19 DNA. Colonies which may contain the foreign DNA were selected by α -complementation. Plasmid DNAs from 178 colonies of the

Table 1. Statistics on genomic library sequencing

Number of plasmids from white clones	528
Number of plasmids which have been sequenced	490
Number of plasmids which gave sequence longer	390
than 350 base pairs Number of clones which have high scoring matches ^a	121
Number of clones which matched with known genes	109
Number of clones which matched with hypothetical protein	12
Matched clones as % of sequenced clones	30%
Sequenced bases estimated	150kb
Sequenced DNA as % of total genome size	9.4%

^aSequence tags with matched score higher than 100 were selected.

pBluescript II KS(+)-based library and 350 colonies of the pUC19 library were purified. Among the 528 selected clones, 38 white colonies contained plasmid DNAs without any insert and 490 colonies had plasmid DNAs harboring *Aquifex* DNA of 0.5-2.0kb (Table 1). The 38 false positives from the α -complementation test probably resulted from the self-ligation of vector DNA which had damaged cloning sites.

Sequence determination and analysis

The nucleotide sequence of A. pyrophilus genomic DNA in the 490 plasmid DNAs was determined using primers specific for the sequences adjacent to the cloning site of the pBluescript II KS(+) or pUC19 DNA. Among those 490 plasmid DNAs, only 390 were successfully sequenced to produce readable sequences of 350-400 bases with the automatic DNA sequencer. The sequencing failure of the remaining 100 plasmid DNAs was probably due to inadequate purity of the DNA or failure in the reaction procedure. Sequencing reactions were not repeated for these plasmid DNAs. The sequence tags obtained from 390 plasmid DNAs were processed for BLAST analysis. Amino acid sequences were deduced in six possible reading frames from each of the obtained sequence tags. Comparison of the sequence tags with the known protein sequences in the Protein Identification Resource (PIR) or Genebank by the use of the BLAST program identified genes having similarity to each tag. A matched score of over 100 from a BLAST search was used as a criterion for deciding whether the unknown sequences were matched to known proteins. There were 121 genes which satisfied this criterion. Among them, 109 tags represented similarity to functionally defined genes and 12 tags were matched to hypothetical proteins whose functions are not yet defined. The tags are categorized based on their function and are listed in Table 2. In addition, two tags similar to proteases with scores less than 100 are also listed.

Interestingly, the sequence tag AQpUs20 had the same DNA sequence as the previously identified elongation factor G gene from *A. pyrophilus* (Bocchetta et al. 1995). The sequence tag represents nucleotides 1857–2227 of the elongation factor G gene. When the two sequences were com-

pared, there were 7 mismatched bases out of 371 bases. The accuracy of sequencing was measured to be more than 98% for this tag.

Genes from A. pyrophilus

The 121 sequence tags are listed with genes having strong similarity in Table 2. The assigned functions for each sequence tag included various cellular functions such as amino acid biosynthesis, energy metabolism, macromolecule metabolism, or biosynthesis of a cell wall component.

Several components of protein transport machinery were identified. Genes with similarity to those for SecA (AQpBbH62), SecF (AQpBH67), and signal recognition particle (AQpBH115) were identified. The presence of the *secA* gene along with other components suggested that this organism possesses a protein transport system similar to that commonly found in Bacteria.

There were several genes whose presence had been anticipated. One of them was isocitrate dehydrogenase (AQpUs43). Activity of isocitrate dehydrogenase had been measured in *Aquifex* (Beh et al. 1993). This enzyme is assumed to make isocitrate from α-ketoglutarate and carbon dioxide as a component of the reductive citric acid cycle by which carbon dioxide fixation is conducted. The kinetic properties of this enzyme could reveal more details of the reductive citric acid cycle. Under anaerobic growth conditions, this organism uses nitrate as an electron acceptor. AQpBH32 represents nitrate reductase, which may be involved in nitrate reduction required for the growth under anaerobic conditions or for nitrogen assimilation.

Three sequence tags similar to proteases, together with their sequence identities, were compared with known proteases (Fig. 1). AQpBbH130 had a strong similarity to ATPdependent endopeptidase La of E. coli, which is involved in degradation of damaged cytosolic proteins (Chin et al. 1988). In addition, two tags (AQpBB007 and AQpUs41) had similar sequences to serine-type proteases although their matched score values were lower than 100. AQpBB007 has a coding region of 18 amino acids due to the short insert size. The amino acid sequence was 61% identical to aqualysin, an extracellular serine protease from Thermus aquaticus (Kwon et al. 1988). Also, the identical region of the tag contained a histidine residue that composed an active site. Since serine-type proteases have high similarity around the active site, which contains serine, histidine, and aspartic acid, AQpBB007 probably represents one of the protease genes in Aquifex.

Several enzymes which use oxygen as a substrate were identified, and their sequence similarity to known proteins is shown in Fig. 2. Two subunits of the respiration complex were identified. AQpBB012 and AQpU238 were similar to cytochrome c oxidase chain I and cytochrome d complex chain II, respectively. The cytochrome d oxidase used oxygen as the terminal electron acceptor and cytochrome d as the electron donor. Besides respiratory proteins, aspartate oxidase (AQpU75) and superoxide dismutase (AQpBH15) were observed. Aspartate oxidase converts aspartate to

Table 2. List of genes obtained from A. pyrophilus genomic library having matches to known genes in other organisms

pir no.	Gene description/categories	Score	Length of ORF	Clone
	Biosynthesis of small molecules			
pir S S08431	2-isopropylmalate synthase (EC 4.1.3.12) – Salmonella typhimurium	237	97	AQpU312
oir S S23070	6-deoxyerythronolide B synthase II – Saccharopolyspora erythraea	103	40	AQpU178
oir S XQBS	amidophosphoribosyltransferase (EC 2.4.2.14) – B. subtilis	227	88	AQpBH116
oir S A38621	aspartate transaminase (EC 2.6.1.1) – <i>Bacillus</i> sp. (strain YM-2)	272	97	AQpBH60
oir S JS0274	biotin synthetase – Bacillus sphaericus	131	117	AQpBB015
oir S F39845	carbamoyl-phosphate synthase (EC 6.3.5.5) – B. subtilis	331	85	AQpU74
oir S SYECKR	chorismate synthase (EC 4.6.1.4) – E. coli	119	74	AQpU173
oir S 16802	cyclase hisF – Azospirillum brasilense	246	126	AQpU163
oir S A31133	diaminopimelate decarboxylase (EC 4.1.1.20) – Pseudomonas aeruginosa	101	96	AQpU356
pir S DEYCG6	glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49) – Synechococcus sp. (PCC 7942)	193	86	AQpU195
oir S A49473	glutamate racemase (EC 5.1.1.3) – Lactobacillus fermenti	223	108	AQpU181
oir S S46975	glutamate synthase (ferredoxin) (EC 1.4.7.1) – Synechocystis sp.	151	75	AQpU167
oir S XNECGM	glutamine–fructose-6-phosphate transaminase (EC 2.6.1.16) – E. coli	211	107	AQpu217
oir S SYECGU	GMP synthase (glutamine-hydrolyzing) (EC 6.3.5.2) – E. coli	221	57	AQpU346
oir S B42280	GMP synthetase – Bacillus subtilis	257	81	AQpU301
oir S DEPSHA	homoserine dehydrogenase (EC 1.1.1.3) – Pseudomonas aeruginosa	185	84	AQpU252
oir S B42594	hyuA – Pseudomonas sp.	136	82	AQpU197
oir S C42594	hyuB – Pseudomonas sp.	149	55	AQpU240
oir S DEBSMP	IMP dehydrogenase (EC 1.1.1.205) – Bacillus subtilis	126	37	AQpBH81
oir S A40615	o-succinylbenzoate synthase – E. coli	329	68	AQpU330
oir S DCUTOB	ornithine decarboxylase (EC 4.1.1.17) – Trypanosoma brucei	117	49	AQpU151
oir S A28088	oxaloacetate decarboxylase (EC 4.1.1.1) – Typanosoma brucci	248	106	AQpU159
oir S S49373	oxygen independent coproporphyrinogen III oxidase – <i>E. coli</i>	164	72	AQpBH164
oir S BVECXA	PdxA protein – E. coli	135	81	AQpU307
oir S 1S21418	phospho-2-dehydro-3-deoxyheptonate aldolase (EC 4.1.2.15) – B. subtilis	109	39	AQpU260
oir S DEBSPE	phosphoribosylaminoimidazole carboxylase (EC 4.1.2.13) – B. subtilis	222	108	AQpU310
oir S SYBS1G	phosphoribosylformylglycinamidine synthase (EC 4.1.1.21) – B. subtilis	165	114	AQpU174
		105		-
oir S S45545	RibA protein – Bacillus subtilis	263	33 78	AQpBH59
oir S PN0100 oir S A42479	RibG protein – <i>Bacillus subtilis</i> S-adenosyl-L-methionine uroporphyrinogen III methyltransferase – Bacillus magatarium	216	75 75	AQpUs10 AQpU155
pir S B47045	Bacillus megaterium uroporphyrinogen decarboxylase (EC 4.1.1.37) – Bacillus subtilis	108	58	AQpU234
	Cell structure			
pir S I42365	flagellar hook-basal body protein FlgG – Bacillus subtilis	109	37	AQpBB013
oir S D36914	integral membrane protein ModB – <i>Rhodobacter capsulatus</i>	198	88	AQpU90
oir S LPECRA	lipoprotein RlpA precursor – E. coli	134	76	AQpUs1
oir S ZPECP2	penicillin-binding protein 2 – E. coli	132	73	AQpU144
pir S JC1275	phospho-N-acetylmuramoyl-pentapeptide-transferase (EC 2.7.8.13) – Bacillus subtilis	116	100	AQpBbH77
pir S A47681	short-chain alcohol dehydrogenase homolog EnvM – E. coli	208	112	AQpU168
oir S JS0701	SmpB protein – E. coli	179	63	AQpBH80
oir S A44917	UDP-N-acetylglucosamine enolpyruvy transferase MurZ – E. coli	128	98	AQpU239
nir \$ A 23920	Cellular processes	166	94	AQpU308
pir S A33830 pir S CEECFY	cation efflux system membrane protein CzcA – <i>Alcaligenes eutrophus</i> cell division protein FtsY – <i>E. coli</i>	303	136	AQpU308 AQpBH115
•	CmcT protein – Streptomyces lactamdurans (fragment)			•
oir S JC1345		111 124	81 85	AQpBH24
oir S A39194 oir S DEPSGD	dipeptide transport protein DppA – <i>E. coli</i> GDP mannose 6-dehydrogenase (EC 1.1.1.132) – <i>Pseudomonas aeruginosa</i>	173	86	AQpBH111 AQpBH1
pir S A25504	H ⁺ -transporting ATP synthase (EC 3.6.1.34) – <i>E. coli</i>	216	63	AQpBB011
oir S C43255	hox Z – Alcaligenes eutrophus	142	57	AQpBB011 AQpBH31
oir S BVECLA	LepA protein – E. coli	336	96	AQpB1131 AQpU213
oir S JN0255	lipoic acid metabolism protein LipA – E. coli	358	109	AQp0213 AQpBH68
		338 140	88	АОрВН13
oir S BVECHJ	molybdenum transport protein ChlJ – <i>E. coli</i>			
oir S JC1345	multidrug resistant protein EmrB – E. coli	147	104	AQpBH25
oir S S47149	SecA protein – Staphylococcus carnosus	103	77 125	AQpBbH62
oir S JQ0697	secretion protein SecF – E. coli	237	125	AQpBH67
pir S B44465 pir S S09250	sodium ion pump oxaloacetate decarboxylase – <i>Salmonella typhimurium</i> uptake hydrogenase (EC 1.18.99) – <i>Rhodocychus gelatinosus</i>	376 194	118 86	AQpU170 AQpU292
	Intermediary metabolism			
		62		AQpBB007

Table 2. Continued

pir no.	Gene description/categories	Score	Length of	Clone
pir S S31885	ATP synthase (c) – <i>Synechococcus</i> sp.	168	66	AQpUs45
pir S S27055	basic proteinase precursor – Dichelobacter nodosus	73	84	AQpUs41
pir S S20534	cytochrome-c oxidase (EC 1.9.3.1) chain I – Rhodobacter sphaeroides	316	118	AQpBB012
pir S B28940	cytochrome d complex (EC 1.10.3) chain II – E . $coli$	207	89	AQpU238
pir S SUECLA	endopeptidase La (EC 3.4.21.53) – E. coli	187	95	AQpBbH130
pir S S19606	HydG protein – Salmonella typhimurium	174	57	AQpBH42
pir S S25692	HypF protein – Rhodobacter capsulatus	230	143	AQpBH110
pir S B49341	isocitrate dehydrogenase (NADP ⁺ B14+) (EC 1.1.1.42) I – <i>Vibrio</i> sp. (strain ABE-1)	322	114	AQpUs43
pir S OXECLD	L-aspartate oxidase (EC 1.4.3.16) – E. coli	236	66	AQpU75
pir S S36863	B-lactate dehydrogenase (EC 1.1.1.27) – Thermotoga maritima	110	84	AQpU176
pir S JS0493	methionyl aminopeptidase (EC 3.4.11.18) – E. coli	165	110	AQpBH5
pir S A39588	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) 50K chain – Paracoccus denitrificans	162	94	AQpUs6
pir S A47751	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain 2 – <i>Paracoccus denitrificans</i>	177	63	AQpU322
pir S S22370	NADH dehydrogenase 23K chain homolog – Rhodobacter capsulatus	127	89	AQpU200
pir S S37065	NADH dehydrogenase I chain NuoH – E. coli	170	90	AQpU251
pir S S49971	nifR3-like gene product – Azospirillum brasilense	128	119	AQpU192
pir S S29756	NifU protein – Azotobacter vinelandii	286	103	AQpU171
pir S S36605	nitrate reductase – <i>Synechococcus</i> sp.	171	112	AQpBH32
pir S S14395	probable cytochrome a assembly factor – Bacillus subtilis	213	92	AQpU258
pir S JT0393	regulatory protein GlnR – Bacillus subtilis	105	66	AQpU93
pir S NIPSRP	regulatory protein XylR – Pseudomonas putida plasmid TOL	126	87	AQpU65
pir S A38461	superoxide dismutase (EC 1.15.1.1) (Mn-Fe) – <i>Methylomonas</i> sp.	142	101	AQpBH15
pir S DWECTD	threonine dehydratase (EC 4.2.1.16) – <i>E. coli</i>	228	80	AQpU028
pir S A41229	transcription initiation factor sigma 54 – Bacillus subtilis	142	92	AQpU202
pir S RNEBST	transcription initiation factor sigma 70 – Salmonella typhimurium	142	93	AQpUs53
pir S JQ0338	transcription initiation factor sigma NtrA – Pseudomonas putida	121	77 - 7	AQpU78
pir S C55216	transcription initiation factor sigmaD – Bacillus subtilis	139	67 - 3	AQpU199
pir S S46946	Zam protein - Cyanobacterium synechocystis	126	79	AQpUt5
-: S A 22160	Macromolecule metabolism	120	20	A O I I 4 7
pir S A33168	26K antigen – Helicobacter pylori	139	28	AQpUts7
pir S SYECAT	alanine–rRNA ligase (EC 6.1.1.7) – E. coli	186	80	AQpU351
pir S JC1118 pir S S16753	alkyl sulfatase (EC 3.1.6) – <i>Pseudomonas</i> sp. aminoacyl-tRNA hydrolase (EC 3.1.1.29) – <i>E. coli</i>	113 111	62 63	AQpU207 AQpBH30
·	AnfA protein – <i>Azotobacter vinelandii</i>	348	124	AQpB1130 AQpU161
pir S A44514 pir S A32412	deoxyribonuclease (pyrimidine dimer)(EC 3.1.25.1) – E. coli	191	81	AQpU101 AQpU216
pir S A40363	DNA ligase (NAD $^+$) (EC 6.5.1.2) – Thermus aquaticus	205	66	AQpU339
pir S A49794	DNA topoisomerase (ATP-hydrolyzing) (EC 5.99.1.3) <i>Neisseria</i>	242	90	AQpU334
1	gonorrhoeae (strain MUG116)			-1
pir S IQBSOC	DnaA protein homolog – Bacillus subtilis	227	88	AQpU344
pir S IQECDB	DnaB protein – E. coli	155	61	AQpBH135
pir S S38928	elongation factor G – Aquifex pyrophilus (fragment)	339	109	AQpUs20
pir S SYECET	glutamate–tRNA ligase (EC 6.1.1.17) – E. coli	157	39	AQpU311
pir S S40178	isoleucine-tRNA ligase (EC 6.1.1.5) - Staphylococcus aureus	162	83	AQpU325
pir S SYTWMT	methionine-tRNA ligase (EC 6.1.1.10) - Thermus aquaticus	325	106	AQpBH73
pir S YFBSB	phenylalanine–tRNA ligase (EC 6.1.1.20) – Bacillus subtilis	103	33	AQpBH72
pir S S35953	prepilin peptidase PilD – Pseudomonas putida	202	104	AQpBH17
pir S S29885	ribosomal protein S8 – Micrococcus luteus	137	55	AQpU262
pir S FCECR1	translation releasing factor RF-1 – <i>E. coli</i>	255	111	AQpU157
pir S S02166	type I site-specific deoxyribonuclease (EC 3.1.21.3) <i>EcoR</i> 124/3 HsdM protein – <i>E. coli</i> plasmid R 124/3	103	58	AQpUts11
pir S A42385	Uvr-402 protein – Streptococcus pneumoniae plasmid pSB470	215	117	AQpU81
pir S A41251	valine-tRNA ligase (EC 6.1.1.9) - Neurospora crassa	228	110	AQpU160
	Other			
pir S C41902	arsenate reductase (EC 1) – Staphylococcus xylosus plasmid pSX267	114	104	AQpUts6
pir S A54058	farnesyltranstransferase (EC 2.5.1.29) – Sulfolobus acidocaldarius	129	76	AQpU245
pir S JT0761	heat shock protein HslU – E. coli	267	97	AQpUs39
pir S A43653	HflX protein – E. coli	245	122	AQpU208
pir S S21957	P-glycoprotein Pgp1 – Arabidopsis thaliana	124	97	AQpU341
pir S S45881	probable purine nucleotide-binding protein YBR025c – yeast	211	79	AQpU253
	(Saccharomyces cerevisiae)			•
pir S KIBSRS	ribose-phosphate pyrophosphokinase (EC 2.7.6.1) – Bacillus subtilis	137	45	AQpBH108
	Hypothetical protein			
pir S Q4ECGG	hypothetical 10K protein (glpD-glgP intergenic region) – E. coli	466	93	AQpUts15

Table 2. Continued

pir no.	Gene description/categories	Score	Length of	Clone
pir S B33171	hypothetical 17K protein (lpxA 5' region) – E. coli	182	59	AQpU299
pir S JQ0872	hypothetical 56.2K protein (ilvG-rrnC intergenic region) – E. coli	225	81	AQpU255
pir S JQ1221	hypothetical 60K protein – Pseudomonas putida	123	65	AQpBH33
pir S S43189	hypothetical protein – Pseudomonas aeruginosa	122	41	AQpUts3
pir S S48428	hypothetical protein – yeast (Saccharomyces cerevisiae)	157	77	AQpU228
pir S S27544	hypothetical protein 1 – Thermoanaerobacterium thermosulfurigenes	186	91	AQpBH44
pir S S26447	hypothetical protein 10 – <i>Methanobacterium thermoformicicum</i> plasmid pFV1	137	91	AQpU88
pir S S43916	hypothetical protein 3 – Bacillus stearothermophilus	120	66	AQpU165
pir S S18078	hypothetical protein 3 – Bacillus subtilis	102	57	AQpU211
pir S PN0543	hypothetical protein 313 – <i>Micromonospora olivasteropora</i> (fragment)	151	111	AQpUs51
pir S C41872	hypothetical protein (groEL 3'-region) – Clostridium acetobutylicum	112	47	AQpU337

ORF, open reading frame.

Fig. 1a–c. Sequence alignment of proteases. The amino acid sequences of the *upper* strands are from *Aquifex* proteins and the *lower* strands are from the homologous proteins.

a AQpBB007 and aqualysin from *Thermus aquaticus* (PIR# A35742).

b AQpUs41 and basic protease from *Dichelobacter nodosus* (PIR# S27055).

c AQpBbH130 and endopeptidase La of *Escherichia coli* (PIR# SUECLA). The identity values for the pairs of sequences are listed *below* each pair

iminoaspartate using oxygen as an electron acceptor. Superoxide dismutase, together with catalase whose activity was previously measured in *A. pyrophilus* (Huber et al. 1992), was probably responsible for the removal of oxygen radical. Since most hyperthermophiles have been grown anaerobically, it has been assumed that they would not have superoxide dismutase or amino acid oxidases. Oxygen-utilizing enzymes identified from *Aquifex* in this study might represent one of the extremely heat-stable enzymes in that class.

Two amino acid racemases which convert an L-form to a D-form amino acid were identified. One of them is glutamate racemase (AQpU181). Since glutamic acid was detected in *Aquifex* cell wall peptidoglycan (Huber et al. 1992), this enzyme is assumed to be responsible for the synthesis of D-glutamate, which is used as a building block of peptidoglycan. Alanine racemase (AQpU219) was also observed in this study, although it was not listed in Table 2 due to the matched score being lower than 100. The comparison of the two tags with other bacterial racemases is

shown in Fig. 3. The amino acids racemases of *Aquifex* might be among the most heat-stable amino acid racemases.

Codon usage

About 30 sequence tags that had a matched score greater than 200 with known proteins were selected. A total of 2608 codons were obtained from the most probable open reading frames, and codon usage for each amino acid is listed in Table 3, along with the codon bias of *Thermatoga* (Kim et al. 1993) and *E. coli* (obtained from the IUBIO archive at Indiana University by way of Internet: ftp.iubio.bio.edu). *Aquifex* showed codon usage similar to that of *Thermatoga*. Amino acids such as Ala, Gly, Ser, Pro, Thr, and Val used almost evenly distributed codons. For arginine, AGA and AGG codons were dominantly used in hyperthermophilic Bacteria. In *E. coli*, however, these codons only represent 7% of the arginine codons. Another

Fig. 2a-c. Sequence alignment of oxidases and superoxide dismutase. The *upper* strands represent *Aquifex* sequences. a AQpBB012 and cytochrome *c* oxidase subunit I from *Rhodobacter sphaeroides* (PIR# S20534). b AQpU75 and aspartate oxidase from *E. coli* (PIR# OXECLD). c AQpBH15 and superoxide dismutase from *Methylomonas* (PIR# A38461)

```
Q N I F W F Y S H P V V Y V Q V L P V F G F Y S E I V P V F A R R P I F G Y H T M V F A I W G I T A V S F F L W I H H M
276 QHILWEFGHPEVYIIVLPAFGIVSHVIATFAKKPIFGYLPMVYAMVAIGVLGFVVMAHHM 335
   FVSGVPNWVRVLFSYTTLL<mark>IAVPTGIKIF</mark>NWMFTLYRGAIHFRSQMLYALGGIFMFLI
336 Y TAGLSLTQQSYFMMATMVIAVPTGIKIFSWIATMWGGSIELKTPWIWALGFLEIFTV
      Identity = 45.8\%
    EPVPVIPAAHYYIGGVEVDDRGRTSVEGLYA<mark>V</mark>GECS<mark>G</mark>TGVHGANRLASNSLLEGIVFG
                     CGGVMVDDHGRTDVEGLYAIGEVSYTGLHGANRMASNSLLECLVYGW 400
   RTAYQV
401 S A A E D I
      Identity = 66%
b
  L Y F G M L T P G G K G E P S E A L K K K I E E D I G G L D A C T N E L K A A A
 82 LFWKVLTPNGGGEPKGALADAIKSDIGGLDTFKEAFTKAAL
   R L V V N G L D A H N V Y N L T G L I P L I V I D T Y E H A Y Y V D Y K N K R P P Y I D A F F K N I N W D V V N E R C E
139 KLVVESTGNQDSPLSTGNTPLLGLDVWEHAYYLKYQNRRPEYLGAFFNVVNWDEVSRRYQ 198
      Identity = 44.6 %
c
```

Fig. 3a,b. Sequence alignment of racemases. The *upper* strands represent *Aquifex* sequences. **a** AQpU181 and glutamate racemase from *Lactobacillus fermenti* (PIR# A49473). **b** AQpU219 and alanine racemase from *Bacillus stearothermophilus* (PIR# A24102)

noticeable trend in Aquifex was a higher G+C content of 56% at the third position of codons, compared with the average of 40% G+C content in the genome. In the case of amino acids using only two codons, such as Asn, Asp, Cys, Gln, Glu, His, Lys, Phe, and Tyr, the average frequency of G or C at the third position of codons was even higher, at 65%.

High frequency of positively charged amino acids

The frequencies of charged and hydrophobic amino acids in *Aquifex* were compared with those from mesophilic bacteria such as *E. coli* or *B. subtilis*. Among the sequence tags, 32 tags with a high matched score and open reading frames longer than 50 amino acids were selected. The amino acids from the sequence tags and the corresponding region of mesophilic bacterial genes were classified as charged amino acids (arginine, lysine, glutamic acid, and aspartic acid),

positively charged amino acids (arginine and lysine), and hydrophobic amino acids (valine, leucine, isoleucine, phenylalanine, and tryptophan). The number of amino acids in each group from the Aquifex sequence was compared with the value from the corresponding sequence from mesophilic bacteria, and is listed in Table 4. One of the outstanding trends was the increased occurrence of positively charged amino acids in Aquifex proteins. The proportion of positively charged amino acids in the examined region in six Aquifex proteins was more than double that in those from mesophilic bacteria. Only 12.5% of the tags had a lower amount of positively charged amino acids. In contrast, the ratio of hydrophobic amino acids was almost unchanged. These results indicated that at least some portions of A. pyrophilus proteins have more positively charged amino acids than their mesophilic counterpart. The increased positively charged amino acid content may result in the increase of ion-pair interactions which in turn contribute to thermostability of proteins.

Table 3. Codon usage in Aquifex pyrophilus

Residue	Codon	Aquifex pyrophilu	ıs	Thermotoga maritima % ^{a,b}	E. coli % a,c	Residue	Codon	Aquifex pyrophilus		Thermotoga maritima % ^{a,b}	E. coli % ^{a,c}	
			No. of codons	% ^a	76				No. of codons	% ^a	76	
Ala	GCA	48	24	28	22		CTG	49	17	21	 55	
	GCC	43	22	22	25		CTT	82	29	27	10	
	GCG	66	34	19	34		TTA	23	8	4	11	
	GCT	40	20	31	19		TTG	12	4	10	11	
Arg	AGA	45	28	56	4	Lys	AAA	53	33	49	76	
_	AGG	84	52	22	3		AAG	110	67	51	24	
	CGA	7	4	5	5	Met	ATG	53	100	100	100	
	CGC	6	4	6	37	Phe	TTC	67	54	82	49	
	CGG	11	7	5	8		TTT	58	46	18	51	
	CGT	8	5	8	42	Pro	CCA	12	11	16	20	
Asn	AAC	70	79	79	61		CCC	57	50	24	10	
	AAT	19	21	21	39		CCG	23	20	29	55	
Asp	GAC	71	66	58	41		CCT	21	19	31	16	
	GAT	36	34	42	59	Ser	AGC	18	13	16	27	
Cys	TGC	25	69	33	57		AGT	14	10	15	13	
	TGT	11	31	67	43		TCA	22	16	13	12	
Gln	CAA	21	38	15	31		TCC	42	30	23	17	
	CAG	35	63	85	69		TCG	16	11	11	13	
Glu	GAA	83	40	65	70		TCT	28	20	21	19	
	GAG	126	60	35	30	Thr	ACA	16	12	43	13	
Gly	GGA	86	44	54	9		ACC	59	43	25	43	
	GGC	31	16	10	40		ACG	49	36	22	23	
	GGG	38	19	11	13		ACT	14	10	10	21	
	GGT	41	21	25	38	Trp	TGG	31	100	100	100	
His	CAC	29	78	74	48	Tyr	TAC	56	70	79	47	
	CAT	8	22	26	52		TAT	24	30	21	53	
Ile	ATA	125	69	34	7	Val	GTA	43	20	13	17	
	ATC	15	8	48	46		GTC	26	12	23	20	
	ATT	40	22	18	47		GTG	32	15	27	34	
Leu	CTA	20	7	4	3		GTT	109	52	37	29	
	CTC	101	35	34	10	Total code	ons sequence	ed: 2608				

For A. pyrophilus, the overall %GC at the third position of codons was 55.6%.

Discussion

The random sequence tag method was used to obtain genetic information from *A. pyrophilus*. This small-genome organism which lives at extreme temperatures has a limited number of genes and served as a target organism for the examination of gene structure by random sequence analysis. About 10% of the total genomic DNA sequence of *A. pyrophilus* was determined and possible genes were identified after sequence comparison. The number of genes identified in this study was 109. If the total number of genes in *A. pyrophilus* is about 1600 and the fraction of functionally definable genes is about 60%, as in *H. influenzae* (Fleischmann et al. 1995), the number of identified genes in this study corresponds to 11% of all functionally definable genes. Since we sequenced about 10% of the total genome, this is well matched with the expected values. Besides the

tags with a matched score greater than 100, listed in Table 2, some of the sequence tags with a score lower than 100 possibly represent a real gene. For example, AQpBB007 has a sequence similar to aqualysin, a serine protease from *Thermus aquaticus*, with a score of 62. When the entire open reading frame containing the sequence tag was cloned and sequenced, it represented one of the serine-protease genes (data not shown).

Aquifex has unique properties, which cannot be observed in other hyperthermophiles, such as oxygen utilization and chemolithotrophic characteristics. Some of the enzymes involved in those processes, aspartate oxidase, superoxide dismutase, glutamate racemase, and components of respiratory complexes, were detected in this study. Interestingly, the presence of subunits of cytochrome c oxidase and of the cytochrome d complex indicated that Aquifex has an oxygen respiratory chain and that cytochrome c oxidase

^aPercentage of amino acid residue coded for by respective codon.

^bKim et al. 1993.

^cFrom IUBIO archive at Indiana University.

Table 4. Comparison of amino acid composition of proteins from A. pyrophilus and mesophilic bacteria

Proteins ^a	Charged amino acids ^b	Positively charged amino acids ^c	Hydrophobic amino acids ^d	Clone name
phosphoribosylformylglycinamidine synthase	1.3	3.3	1.1	AQpU174
homoserine dehydrogenase	1.4	2.5	1.1	AQpU252
glutamate racemase	1.7	2.2	1.0	AQpU181
aspartate transaminase	1.4	2.0	1.5	AQpBH60
L-aspartate oxidase	1.2	2.0	1.1	AQpU75
LepA protein (GTP-binding membrane protein	1.1	2.0	1.1	AQpU213
hyuA(D-5-substituted hydantoin conversion)	1.3	1.8	1.0	AQpU197
valine-tRNA ligase	1.3	1.8	1.4	AQpU160
deoxyribonuclease	1.3	1.6	1.1	AQpU216
LipA protein (lipoic acid metabolism)	1.2	1.4	1.2	AQpBH68
Uvr-402 protein	1.2	1.4	1.0	AQpU81
GMP-synthase	1.1	1.4	0.9	AQpU346
cytochrome c oxidase chain I	0.9	1.3	1.1	AQpBB012
DNA topoisomerase	1.1	1.3	1.0	AQpU334
oxaloacetate decarboxylase	1.2	1.3	1.0	AQpU159
phosphoribosylaminoimidazole carboxylase	1.2	1.3	1.0	AQpU310
translation releasing factor RF-1	1.0	1.3	1.4	AQpU157
S-adenosyl-l-methionine uroporphyringogen III methyltransferase	1.2	1.2	1.0	AQpU155
cytochrome d complex chain II	0.8	1.2	1.1	AQpU238
nifU(nitrogen fixation related protein)	0.9	1.1	1.2	AQpU171
2-isopropylmalate synthase	1.2	1.1	0.9	AQpU312
cyclase hisF	1.1	1.1	0.9	AQpU163
methionine-tRNA ligase	1.2	1.1	1.2	AQpBH73
amido phosphoribosy transferase	1.0	1.0	1.1	AQpBH116
DNA ligase	0.9	1.0	1.1	AQpU339
dnaB (replicative DNA helicase)	0.8	1.0	1.1	AQpBH135
isocitrate dehydrogenase	1.0	1.0	1.0	AQpUs43
o-succinyl benzoate synthase	1.0	1.0	1.0	AQpU330
isoleucine-tRNA ligase	1.1	0.9	1.3	AQpU325
glutamine–fructose-6-phosphate transaminase	1.0	0.9	1.1	AQpU217
carbamoyl-phosphate synthase	1.0	0.9	1.0	AQpU312
threonine dehydratase	0.8	0.7	1.0	AQpU028
Average of all proteins	1.1	1.4	1.1	-1

^a Proteins with more than 50 amino acids were selected for the comparison, and corresponding regions were compared.

is used for the last step of respiration. Sequence analysis and biochemical characterization of these enzymes may provide detailed information about the evolution of molecular oxygen utilization.

The high ratio of positively charged amino acids as compared with that of mesophilic proteins may explain the stability of Aquifex proteins. Three-dimensional structures of several hyperthermophile proteins have been determined and compared with the structures of mesophilic proteins. One of the remarkable differences is a large number of ion-pairs or network of ion-pairs at the surface of hyperthermophilic proteins. In case of glutamate dehydrogenase, the Pyrococcus protein has 70% more ion-pair interactions within a subunit as well as 100% more intersubunit ion-pair interactions than the Clostridium symbiosum protein (Yip et al. 1995). Comparison of the glyceraldehyde 3-phosphate dehydrogenase structure from Thermotoga and Bacillus also indicated an increased number of ion-pair interactions in hyperthermophilic proteins as a major distinguishing feature (Korndorfer et al. 1995). For increased ion-pair interaction, these proteins had more charged amino acids, especially positive charged amino acids. If ion-pair content or a network of ion-pairs is the main contributor of thermostability to hyperthermophilic proteins, *Aquifex* proteins might be expected to have more charged amino acids. As shown in Table 4, the majority of the examined sequences have higher contents of positively charged amino acids than do proteins from mesophilic bacteria. In contrast, there was no significant difference in the distribution of hydrophobic amino acids. More extensive sequence analysis and structure determination will reveal the role of ion-pair interaction in thermostability of proteins from hyperthermophilic bacteria.

Acknowledgments We thank Dr. K.-S. Kim of the Structural Biology Center of the Korea Institute of Science and Technology for helpful advice on the application of the SEQSEE and BLAST programs. This work is supported by a grant from the Ministry of Science and Technology, Korea. The work of S.-H. Kim has been supported by the Office of Health and Environmental Research, U.S. Department of Energy (DE-AC03-765F00098).

b-d Number of each amino acid in protein from A. pyrophilus divided by number of corresponding amino acid in protein from mesophile.

^bCharged amino acids: Lys, Arg, Asp, Glu.

^cPositively charged amino acids: Lys, Arg.

^dHydrophobic amino acids: Val, Leu, Ile, Phe, Trp.

References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
- Beh M, Strauss G, Huber R, Stetter KO, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium *Aquifex pyrophilus* and in the archaebacterium *Thermoproteus neutrophilius*. Arch Microbiol 160:306–311
- Behammer W, Shao Z, Mages W, Rachel R, Stetter KO, Schmitt R (1995) Flagella structure and hyperthermophily: analysis of a single flagellin gene and its product in *Aquifex pyrophilus*. J Bacteriol 177:6630–6637
- Bocchetta M, Ceccarelli E, Sanangelantoni AM, Tiboni O, Cammarano P (1995) Arrangement and nucleotide sequence of the gene (fus) encoding elongation factor G (EF-G) from hyperthermophilic bacterium Aquifex pyrophilus: phylogenic depth of hyperthermophilic bacteria inferred from analysis of EF-G fus sequences. J Mol Evol 41:803–812
- Brown JR, Doolittle WF (1995) Root of the universal tree of life based on ancient aminoacyl t-RNA synthetase gene duplications. Proc Natl Acad Sci USA 92:2441–2445
- Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrman J, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Robert KM, Hurst MA, Kaine BP, Borodovsky M, Klenk HP, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, *Methanococcus jannaschii*. Science 273:1058-1073
- Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of *Aquifex pyrophilus*. Syst Appl Microbiol 15:352–356
- Chin DT, Goff SA, Webster T, Smith T, Goldberg AL (1988) Sequence of the *lon* gene in *Escherichia coli*: a heat shock gene which encodes the ATP-dependent protease La. J Biol Chem 263:11718–11728
- Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu L, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL,

- Fuhrman J, Geoghagen NSM, Gnehm CL, McDonald L, Small KV, Fraser CM, Smith HO, Venter CJ (1995) Whole genome random sequencing and assembly of *Haemophilus influenzae* Rd. Science 269:496–512
- Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Konig H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) *Aquifex pyrophilus* gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351
- Kim CW, Markiewicz P, Lee JJ, Schierle CF, Miller JH (1993) Studies of the hyperthermophile *Thermotoga maritima* by random sequencing of cDNA and genomic libraries: identification and sequencing of the *trpEF(D)* operon. J Mol Biol 231:960–981
- Korndorfer I, Steipe B, Huber R, Tomschy A, Jeaniche R (1995) The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium *Thermotoga maritima* at 2.5 Å resolution. J Mol Biol 246:511–521
- Kwon ST, Terada I, Matsuzawa H, Ohta T (1988) Nucleotide sequence of the gene for aqualysin 1 (a thermophilic alkaline serine protease) of *Thermus aquaticus* YT-1 and characteristics of the deduced primary structure of the enzyme. Eur J Biochem 173:491–497
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor University, Cold Spring Harbor, NY
- Shao Z, Mages W, Schmitt R (1994) A physical map of the hyperthermophilic bacterium *Aquifex pyrophilus* chromosome. J Bacteriol 176:6776–6780
- Stetter KO, Konig H, Stackebrandt E (1983) *Pyrodictium* gen. nov., a new genera of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551
- Wetmur JG, Wong DM, Ortiz B, Tong J, Reichert F, Gelfand DH (1994) Cloning, sequencing and expression of RecA proteins from three distantly related thermophilic eubacteria. J Biol Chem 269:25929–25935
- Wishart DS, Boyko RF, Willard L, Richard FM, Sykes BD (1994) SEQSEE: a comprehensive program suite for protein sequence analysis. Comp Appl Biosci 10:121–132
- Yip KSP, Stillman TJ, Britton KL, Artymiuk PJ, Barker PJ, Sedelnikova SE, Engel PC, Pasquo A, Scandurra R, Rice DW (1995) The structure of *Pyrococcus furiosus* glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158